Intra-species variation in transient accumulation of leaf anthocyanins in Cistus creticus during winter: evidence that anthocyanins may compensate for an inherent photosynthetic and photoprotective inferiority of the red-leaf phenotype.
نویسندگان
چکیده
Leaf color in some individuals of Cistus creticus turns transiently to red during winter, while neighboring individuals occupying the same site remain green. We have examined whether anthocyanin accumulation can be associated with variations in photosynthetic and/or photoprotective characteristics between the two phenotypes, rendering the red phenotype more vulnerable to photoinhibition and, accordingly, needing additional protection in the form of anthocyanins. Towards this aim, maximum (pre-dawn) and effective (mid-day) PSII photochemical efficiencies, xanthophyll cycle pool sizes and leaf nitrogen contents were seasonably followed, encompassing both the green (spring, summer, autumn) and the red (winter) period of the year. Moreover, the distribution of the two phenotypes in exposed and shaded sites was assessed. The frequency of red individuals was considerably higher in fully exposed sites, pointing to a photoprotective function of leaf anthocyanins. Yet, the assumption was not corroborated by pre-dawn PSII yield measurements, since both phenotypes displayed similar high values throughout the year and a similar drop during winter. However, the red phenotype was characterized by lower light-saturated PSII yields, xanthophyll cycle pool sizes and leaf nitrogen, during both the green and the red period of the year. Based on this correlative evidence, we suggest that winter redness in C. creticus may compensate for an inherent photosynthetic and photoprotective inferiority, possibly through a light screen and/or an antioxidant function of leaf anthocyanins.
منابع مشابه
Transient winter leaf reddening in Cistus creticus characterizes weak (stress-sensitive) individuals, yet anthocyanins cannot alleviate the adverse effects on photosynthesis
Under apparently similar field conditions individual plants of Cistus creticus turn transiently red during winter, while neighbouring plants remain green. These two phenotypes provide a suitable system for comparing basic photosynthetic parameters and assessing critically two hypotheses, i.e. anthocyanins afford photoprotection and anthocyanins induce shade characteristics on otherwise exposed ...
متن کاملFunctional role of red (retro)-carotenoids as passive light filters in the leaves of Buxus sempervirens L.: increased protection of photosynthetic tissues?
Red (retro)-carotenoids accumulate in chloroplasts of Buxus sempervirens leaves during the process of winter leaf acclimation. As a result of their irregular presence, different leaf colour phenotypes can be found simultaneously in the same location. Five different colour phenotypes (green, brown, red, orange, and yellow), with a distinct pattern of pigment distribution and concentration, have ...
متن کاملLeaf morphological and physiological adjustments to the spectrally selective shade imposed by anthocyanins in Prunus cerasifera.
Prunus domestica L. has green leaves, whereas Prunus cerasifera Ehrh. var. atropurpurea has red leaves due to the presence of mesophyll anthocyanins. We compared morphological and photosynthetic characteristics of leaves of these species, which were sampled from shoots grafted in pairs on P. domestica rootstocks, each pair comprising one shoot of each species. Two hypotheses were tested: (1) an...
متن کاملXanthophyll cycle pigment and antioxidant profiles of winter-red (anthocyanic) and winter-green (acyanic) angiosperm evergreen species.
Leaves of many angiosperm evergreen species change colour from green to red during winter, corresponding with the synthesis of anthocyanin pigments. The ecophysiological function of winter colour change (if any), and why it occurs in some species and not others, are not yet understood. It was hypothesized that anthocyanins play a compensatory photoprotective role in species with limited capacit...
متن کاملClimatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes).
Climate is a major selective force in nature. Exploring patterns of inter- and intraspecific genetic variation in functional traits may explain how species have evolved and may continue evolving under future climate change. Photoprotective pigments play an important role in short-term responses to climate stress in plants but knowledge of their long-term role in adaptive processes is lacking. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of plant physiology
دوره 165 9 شماره
صفحات -
تاریخ انتشار 2008